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A simple equation is derived from one- and two-particle density matrices in the free-Fermi-gas approx- 
imation for obtaining the incoherent intensity of X-rays scattered by an atomic N-electron system. The 
accuracy of the equation is tested on the Thomas-Fermi-Dirac statistical atomic model. The numerical 
results are compared with those obtained from the known Heisenberg-Bewilogua function and with 
the atomic incoherent intensities calculated by D. T. Cromer [J. Chem. Phys. (1967). 47, 1892-1893; 
(1969). 50, 4857-4859] using complete Waller-Hartree theory and the HF SCF model. The results ob- 
tained by the present method from the TFD model are in good agreement with Cromer's data. 

1. Introduction 

Incoherent scattering functions of X-rays are known 
for all the atoms and a limited number of ions (Z_< 32) 
from the works of several authors (Freeman, 1959, 
1960; Freeman & Watson, 1962; Cromer, 1967, 1969; 
Tavard, Nicolas & Rouault, 1967; Pohler & Hanson, 
1965). The majority of these works were based on the 
complete Waller & Hartree (1929)(WH) theory. 
The calculations differ from each other in the use of 
either numerical or analytical, HF or HFS SCF wave 
functions, respectively. 

Owing to the complexity of numerical calculations, 
the incoherent intensities of heavy atoms based on the 
WH theory, were determined only in the late sixties 
(Cromer, 1967, 1969). A simplification of the WH 
theory is achieved by neglecting the exchange effect. It 
was James & Brindley (1931) who determined inco- 
herent scattering functions on this way which, however, 
resulted in significant errors. 

For the atomic incoherent intensities, an approxima- 
tion based on the statistical TF atomic model, was per- 
formed by Heisenberg (1931). The resulting universal 
function was numerically evaluated by Bewilogua 
(1931) (HB function), and later by Pohler & Hanson 
(1965). The determination of the incoherent scattering 
functions from the universal HB function for atoms 
with different atomic numbers reduces to a task of 
scaling, the atomic number Z figuring in the argument 
w of the HB function. Scattering functions more exact 
than these for the heavy atoms have been failing up to 
1967. It is worth mentioning that whereas coherent 
scattering functions have been determined on the basis 
of nearly all the improved statistical atomic models 
(Thomas & Umeda, 1957; Csavinszky, 1970; Dobay- 
Szegleth, 1970; Bonham & Strand, 1963), this work 
has not been done for the incoherent ones with the 
sole exception of the TF model. 

In the present paper a simple relationship is shown, 
in the free-Fermi-gas approach, between the incoherent 
scattering function on one part, and the electron den- 

sity and the total electrostatic potential of an N- 
electron system on the other. With the aid of this rela- 
tionship, atomic incoherent scattering functions were 
determined on the basis of TF and TFD atomic 
models respectively. 

The results are compared to the values obtained 
from the HB function which is based on Heisenberg's 
equation, and to those given by Cromer (1967, 1969) 
who used the WH theory and HF SCF wave functions. 
A good agreement was found between the latter and 
those computed from the TFD model by the present 
author. 

Incoherent scattering functions of the ions are 
known in the range of lower atomic numbers only 
(Z< 32). The relationship presented below lends itself 
to calculating the incoherent scattering functions of 
heavy ions in a simple way. The knowledge of the in- 
coherent intensities of the ions is particularly impor- 
tant in structural studies of electrolyte solutions by 
X-ray diffraction. In the majority of works on this 
subject, the incoherent intensities of the heavy ions are 
approximated by the values of Bewilogua's function 
for the isoelectronic atom (Wertz & Kruh, 1970). In 
some other papers the HF incoherent values of the 
isoelectronic atom are used for high values of the 
scattering variable, and the function is extrapolated 
to zero on an arbitrary way in the range of small 
scattering-variable values (Bol, Gerrits & van Pant- 
heleon van Eck, 1970). 

2. Theory 

2.1 Waller-Hartree approximation 
For the total intensity of X-ray photons scattered by 

an N-electron system at a scattering angle 0 - provided 
that the energy of the primary photon is higher than 
the energy differences between the bound states of the 
system - the Waller-Hartree theory gives the following 
expression (Benesch & Smith, 1970) 

I,(O)/L~= (~'olPP*l~/g) (1) 
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where Vo is the normalized N-electron wave function of 
the system in ground state, I~ the total intensity of 
photons scattered on a classical point charge. Scattering 
operator P is defined as 

N 

P =  ~ exp {iqr:}, (2) 
j = l .  

scattering vector q representing the difference between 
the wave-number vectors of the primary and scattered 
photons, 

Iql = (4n/~) sin (O/2)=4ns=q.  

The contribution of the coherently scattered X-ray pho- 
tons to the total intensity is 

g(o)/g, = I @ o l P I w , , ) l  • (3) 

Using the following definitions for one-particle and 
two-particle density matrices (L6wdin, 1959) 

2 P 
1F(I ' ,2 'I  1,2)d2, (4) y ( l ' l l ) -  N -  1 

and 

T'(1'2'11,2)=(~') I V9(1"2"3""" N)v/~(1,2,3... N) 

x d3dN 

respectively, where symbol 1 denotes the space and 
spin coordinates of the particle: 1 = (r, a), and integra- 
tion includes spin summation. Expression (1) for the 
total intensity can be transcribed (Benesch & Smith, 
1970) into 

I exp {iq(rl-r2)}F(l ' ,2 ' l l ,2)dld2 (5) I,(q)/Zo,= N + 2 

whereas the coherent component can be expressed with 
the one-particle density matrix as 

I exp {iqr}),(l'[ 1)dl[ 2. (6) Ic(q)/I~l = l 

From (5) and (6) it is evident that the total intensity 
component is a two-particle property whereas the 
coherent scattering is a one-particle property. 

If the N-electron wave function Vo is approximated 
by the normalized Slater determinant of the one- 
electron state spin orbitals ~0k(1)(HF approximation) 
according to 

1 
g g =  ~ . v - ~  det {rpk(1,)}, (7) 

then one-particle and two-particle matrices take the 
following forms: 

N 

g(l'12)-- ~ 9; (1')~ok(2) (8) 
k = l  

and 

V(l"2')l 1'2)=½1 y(2'l 1) y(l'[ 1) y(2'[2))'(1'12) I 

respectively. 

The second relationship, i.e. the fact that the two- 
particle density matrix is defined by the one-particle 
matrices is characteristic of the HF approach. 
Benesch & Smith (1970) have pointed out that equation 
(5) for the total intensity is equivalent to the total in- 
tensity expression of the WH theory 

I~(s)/Ic, = [ ~ f:j[2 + N -  ~ ]fjj[2_ ~ ~ [f:k[z (9) 
J j j k ~ j  

where 

I exp {iqr}~0k(r)~0~(r)dr~(aj, ~k). (10) f~k--- 

The first term of the right-hand side of (9) is the cohe- 
rent intensity component. The last one arises from the 
antisymmetry of the HF N-electron wave function. 
This antisymmetry leads to the exchange correlation 
between electrons of identical spin which is called the 
'Fermi hole'. 

If the N-electron wave function is approximated by 
the Hartree product of one-electron spin orbitals, the 
last term in (9) cancels out. 

2.2 Fermi-gas approximation 
Expression (6) for the total intensity is presented 

below in the Fermi-gas approach. Let us suppose that 
the temperature of the electron gas is zero, i.e. each of 
the N/2 energetically deepest cells of the phase space 
is occupied by 2 electrons with antiparallel spins and 
the other cells are empty. 

The N-electron wave function is approximated by a 
Slater determinant composed of one-electron spin or- 
bitals of the form 

1 
r,0j(li)- (~e-~)l/2 exp {ik:ri}e(a:). 

According to this, the spin-independent one-particle 
density matrix can be written in the form (McWeeny, 
1960) 

2 
I exp {- ik( ra- r2)}dk,  (12) y(rdr2)- (2n) 3 k<_kf 

k~ denoting the Fermi wave number. 
With this expression, the corresponding two-particle 

density matrix from (8) takes the form 

2f(r~,h[rl, r~)- k} k} 
3n 2 3n 2 

_ 1 I exp {- ik( r l - r2)}dk  
32 n6 k<_kf 

x f exp {ik'(rl-r2)}dk'.  (13) 
k'<_kf 

By making use of the relationship between the maximal 
wave number and the electron density of a Fermi-gas 
according to 

kaf(r) = 3~z20(r), (14) 
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we obtain from (6) for the intensity of coherently 
scattered photons the expression 

Ic(s)/lcl = f ( s ) .  f (s )  
and 

= f exp f (s)  {iqr}Q(r)d(r) . (15) 

So it can be seen that the coherent intensity component 
is determined by the Fourier transform of the electron 
density in this Fermi-gas approach also. The incoherent 
part of the total intensity from (13) and (5) is 

1 
I exp {iq(rl-r2)} • I~(s)/Ic, = N -  3--2rc--g- 

x l~_< k: exp { -- ik(r, - r2) }dk 

x I exp {ik'(r~-rz)}dk'dr~dr2. (16) 
,J 

If 
r '  = r 1 - -  r 2 

and integration over the relative coordinate is carried 
out, (16) is reduced to 

The delta-function in the integrand represents the mo- 
mentum conservation law 

q = k - k ' .  (18) 

We remark, however, that (18) is not quite correct for 
incoherent scattering since vector q is only the azimu- 
thal component of the momentum transfer. In (18) the 
change of magnitude of the momentum, which is in any 
case characteristic of the incoherent scattering, is ne- 
glected. This neglect, however, is already implied in the 
WH theory, and thus also in equation (5). 

It follows from the above that the sixfold integral 
over k figuring in (17) must be taken in the overlap 

k z  

t, Ts 

h 

Fig.1. Integration range of equation (19) in the k plane. 

range of two spheres, each of radius k:  and off-centred 
by a vector q from one another, (Fig. 1). The k~ axis 
of the coordinate system in the Figure is taken coinci- 
dent with the scattering vector. From equation (18), 
and the condition k,k'<_ k:  follows, that 

I q l = l k - k ' l  < 2 k : .  (19) 

Contributions to the integral are furnished by only 
those electron states with momenta p = h k  for which 
condition (18) is fulfilled, and the diameter 2k: of the 
momentum sphere is not less than 4~s, the modulus of 
the scattering-variable vector. In space these electron 
states are located within a sphere of radius r0. The 
limiting radius r0 is implicity defined by the following 
equation derived from (19) and (14) 

213rc20(ro)] 1/3 -- ao4Z~s = 0.  (20) 

Taking into consideration all the above conditions and 
integrating over k in the range shown in Fig. 1 we ob- 
tain 

1S [I: I~(s)/I¢l=N--~-~- dr ( k } - k ~ + 2 k z q - q 2 ) d k z  
, )q--k:  

] I k: 4 rZk:(r)d r + (k~-k~)dkz  = - ~  ,o 
q/2 

+ 4aos Ii ° k~(r)rZdr - 169 z~Za3o(sro)3 . (21) 

In equation (20) and (21) and in the following we are 
using atomic units: distances are expressed in Bohr 
radii a0, potential in e/ao, electron density in 1/a~, and 
the wave vector in 1/ao units. 

Equation (21) can be further transformed. We make 
use of the relationship between the Fermi wave number 
and the electrostatic potential 

k2s/2= V(r) 
where 

f" I V ( r ) -  Z 1 D ( t ) d t -  D(t) dt • 
r r 0 r t 

and Z is the charge of the nucleus. 
This relationship together with equation (14) leads 

to the final form of the incoherent scattering function 
in Fermi-gas approximation. 

L o $7 I~(s)/Icl = (r)dr + 8aos V(r)r2dr 

16 ~2a~(sro)3 ' (22) 
9 

ro(s) is determined from the equation 

( 6ztD(r°) ) ~/3 -4zm0s=0 (23) 
/.0 2 

where D(r) is the radial electron density. 
Equation (22) also contains the contribution of the 

exchange effect. This is evident, considering that (22) 

A C 30A - 3* 



164 I N C O H E R E N T  X - R A Y  S C A T T E R I N G  IN THE F R E E - F E R M I - G A S  A P P R O A C H  

was obtained by approximation on the basis of equa- 
tion (8). 

The first term of the expression gives the number of 
electrons outside the sphere of radius r0. Thus this term 
is sensitive to the behaviour of the radial electron den- 
sity in the outer part of the r range, while the second 
term is sensitive to the potential function within r0. The 
function ro(s) can be qualitatively examined by sub- 
stituting the electronic density of the hydrogen ls state 
into (23), 

exp (-~r0)'-~ s .  

We can see that there is a certain reciprocity relation 
between the scattering variable s and r0. 

It is to be noted that the philosophy of Heisenberg's 
approximation for the incoherent scattering functions 
of the atoms on the basis of the TF atomic model is 
similar to that of the above treatment. However our 
equation (22) is more generally valid because it does 
not restrict itself to the TF atomic model. The given 
expression for the incoherent intensities in the Fermi- 
gas approximation represents the dependence of the 
incoherent scattering functions of an N-electron system 
(atom or ion) on its radial electron density and its 
electrostatic potential. The statement implied in (22) is 
of the same character as that stating the coherent 
scattering function to be the square of the Fourier 
transform of the radial electron density. There is a 
difference between the two statements in their validity 
ranges: the latter is generally valid including Fermi-gas 
approximation (as shown above) whereas statement (22) 
is valid only for this approximation. 

3. Numerical results 

Equation (22) will be applied below for the TF and 
TFD models. We use in these models potential and 
electron density functions derived from approximate 
analytical screening factors of the same form. Screening 
factors of the form 

Zp(r)/Z= ~ 7, exp { - 2 , r  } (24) 
i 

have been determined for the TF atomic model by Ro- 
senthal (1936) and for the TFD model by Bonham & 
Strand (1963). 

The radial electron density and the complete electro- 
static potential corresponding to (24) are the following 

and 

D(r)=Zr ~ ~,2] exp {-2~r} 
i=l 

Z Zp(r) 
V ( r ) =  - -  

r Z 

With these expressions equation (22) and (23), needed 
for the determination of the incoherent scattering func- 
tion, become analytical. 

With the introduction of the notation 

x~ = 2~r0( s )  

QO ° 

~ Q I I  QQI y. 
i i i s~") i 

Fig.2. Incoherent intensity functions I "rF calculated from the 
TF model ( - )  compared to values I aB of Heisenberg- 
Bewilogua (+) and I cR of Cromer (e). 

Table 1. Exchange energy values (a.u.) determined by the sum-rule procedure 
and calculated from different atomic models 

Z TFx.,. TFcat TFD* .... TFDcal HF SCF~.r. 
Ar 18 26"28 26"31 31"03 28"16 29-46 
Fe 26 48"86 48"53 55"10 51"31 
Ga 31 65"73 65.03 72.58 68.39 
Kr 36 84.54 83"41 91"70 87"30 90"57 
Rb 37 88.52 87.92 95.72 91.29 
Cd 48 136.59 134.60 143"56 139"50 
Xe 54 165.90 163.70 172.36 169.10 171.02 
La 57 181.28 179.10 187.42 184.60 
Gd 64 219.03 217.10 224.28 223.10 
Yb 70 253-25 252.00 257.67 258.20 
Hg 80 313.85 314.60 316.97 321.50 315.61 
U 92 391.84 396.80 394.07 404.80 
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(22) and (23) obtain the following form 

I i (s ) / lc ,=Z~,  7i(xi+ 1)exp { - x i } + 8 a o s Z  Z ?t 

× [ 1 - ( x i +  1) exp { - x i } ] -  ~6_ Zdao(Sro)3 (25) 

and 

I 6zcZ ~ yi2~ exp { - x i }  
i 

/'o 

1/3 

- 4ZmoS= O. (26) 

7' 

(x) 6! 

4 ¸ 

3 

\ A 
• ,, \ / \ . - - 4 ,  
X . - . k . . . - - "  \ /  " -  

2"0 4"0 go do 16o z 
Fig.3. Standard deviations of the present intensities from I cR 

for several atoms and calculated from TFD* ([]), TFD (•) ,  
TF (+) models. 

K r  

15] xx xx 

1 2 3 S(,~';) 14 t. 

Fig.4. Plot of the three terms of equation (22) vs. s in the 
example of the Kr atom. Comparison of TFD* ( - )  and 
TF ( x ) data. 

Y1 and 21 are atomic parameters. The dimensions of 
21 are 1/ao. With the use of (25) and (26), and on the 
basis of the TF and TFD atomic models, incoherent 
scattering functions have been computed for a series 
of atoms covering the atomic number range from Z =  18 
to 92 (notation below Imod,~). 

The accuracy of these calculations was checked in 
two ways: firstly by comparing the results with those of 
Cromer (1967, 1969) who used the WH theory and HF 
atomic model (Cromer's values are denoted by ICR), 
and secondly by a sum-rule procedure. In this compari- 
son 

e m o d e l  - 1 ] /  ~d2~ with (~ l = I m°del( si) -- ICR(si) 
g V n - l '  

was taken as the measure of deviation. 
Here n is the number of scattering variable values at 

which comparisons were made. Since in experimental 
X-ray work s < 1.2, e was somewhat weighted in favour 
of this range by choosing the following 15 s-values for 
the comparison 0, 0.1, 0 -2 , . . .  1-0, 1.5, 2, 3, 4. 

Another estimation of the accuracy was made by 
examining the so-called sum rule (Tavard, 1966). The 
two-particle contribution to the potential energy of the 
scattering atom is 

[It(s) /Icl-Nlds=z~ =½ ~ ~ V u . (27) 
0 i j ~ i  

Between the exchange-energy term (together with the 
self-exchange energy) of the two-particle potential 
energy and the incoherent scattering function there 
exists the following relationship: 

- : ~ x ~ =  o [U-Ii(s)/Ic,lds=~ 712 o~c~" 

On the other hand, the values of J~x~h can be deter- 
mined in a statistical way according to 

where 

P 
_ _  1 ~ gexchOdV - -  " - ~ e x c h  - -  2 

d 
(29) 

_ 3 Q 1 / 3  
V e x c h  - -  ~- 

is the Slater exchange potential. 
In our calculations the exchange energies were deter- 

mined in both ways for the different atomic models. 
A S'm°del denotes the values obtained from (29) and ca l  

j~ofel those calculated from (28) with scattering func- 
tions from (25) and (26). 

Integrations were performed numerically in both (28) 
and (29) by use of the standard Simpson method. 
For this purpose the integrands in (28) had been deter- 
mined in the range 0 < s <  14. For the sake of compari- 
son, in some cases Jsc~ from the incoherent scattering 
functions of Cromer were also determined the functions 
having been extrapolated in the range 8 < s<  14. 



166 I N C O H E R E N T  X - R A Y  S C A T T E R I N G  IN THE F R E E - F E R M I - G A S  A P P R O A C H  

3.1 Incoherent scattering o f  TF atoms 
For the TF model equation (24) was used with param- 
eters given by Rosenthal. With the help of (25) and (26) 
the incoherent scattering functions were determined for 
a number of elements. As illustrative examples those 
of Kr, Xe and Hg are shown in Fig. 2. The same 
Figure contains the corresponding ICR functions, and 
the values of the Heisenberg-Bewilogua function I H8 
as well (P~ilink~is, 1973). It can be seen that our func- 
tions agree well with those obtained from the HB func- 
tion. This is evident, because - as can easily be shown 
- in the case of the TF model Heisenberg's equation is 
equivalent to equation (22). It is known that the TF 
model takes no account of the exchange effect, but, as 
mentioned in § 2.2, equation (24) was derived with 
allowance for the exchange. For this reason the contri- 
bution of this effect will be present in the incoherent 
scattering function. From Table 1 it can be seen that 
the exchange energy values obtained by the sum rule 

T F  ( is . r )  and those calculated from TF electron densities 
T F  (Jcal) agree well for all the atomic numbers. They are, 

however, lower than the corresponding values from 
TFD and HF SCF atomic models (Table 1). 

The relatively high values of e TF (Fig. 3) compared to 
those of the other models can be explained by the fact 
that the TF electrostatic potential and the radial elec- 
tron density over the outer range are both higher than 
those of the other models. (The TF atom is more ex- 
panded.) The higher contribution of these functions 
to the scattered intensities (one of them for small s 
values, the other over nearly the whole s range) is 
illustrated also in the case the Kr atom in Fig. 4. These 
contributions are further increased because the integra- 
tion limit r0 grows more rapidly with decreasing s as a 
second consequence of the higher D(r), (Fig. 5). 

3.2 Incoherent X-ray scattering o f  the TFD atoms 

For the TFD model, analytic screening factors were 
used with the atomic parameters given by Bonham & 
Strand. Fig. 3 shows that the e TFD values pertaining to 
the incoherent intensities derived from the TFD den- 
sities and an electrostatic potential are smaller than 
those from the TF model, i.e. they approximate more 
closely the scattering functions calcultaed from the HF 
WH theory. Table 1 also shows that the j~[.v exchange 
energies are somewhat larger than the Jsc.~ values for all 
atomic numbers. 

A further improvement of the TFD results could be 
achieved by modifying the only physical constant in 
equation (22), the Bohr radius a0. Gg, sp~ir (1969) has 
pointed out that starting from an atomic model con- 
structed of hydrogen-like one-electron orbitals, a TF- 
like model could be obtained in zero-order approxima- 
tion of E / Z  2. According to this theory, the electron 
shell of the atom is a free-electron gas where the elec- 
trons - quasiparticles - possess a reduced mass of 
m = 0-9273me. 

Using this result in the theory of § 2.2, a0 in equation 
(22) and (23) changes to a *= 1"0785 ao. In the Figures 

and in the text below the incoherent scattering values 
and other derived quantities computed from the modi- 
fied equations (22) and (23) are indexed by an asterisk 
(*). This modification has resulted in further reduction 
of the eTFD, values, (Fig. 3). ITFO, scattering functions 
have been also computed for a series of elements cover- 
ing the periodic system (Fig. 6). In this Figure the 
corresponding Icg values are also shown. Evidently, 
our results agree very well with those of the more cor- 
rect WH theory. Similary, a good coincidence of J~[.FO* 
and the J s  c} exchange energies was also found, (Table 
1). It can also be seen from Table 1 that the exchange 
energies calculated by the sum rule agree with good 
accuracy with the ~¢~a~ D values calculated from the mo- 
del. Remaining small deviations of the incoherent 
scattering functions ITFO, from those calculated with 
WH theory originate partly from the approximating 
character of equation (22) and (23), partly from the 
deficiencies of the model, the errors of the analytic fits 
included. The dependence of the terms in the modi- 
fied equation (22) on the scattering variable is shown 
in Fig. 4 for the example of the Kr atom. The relation- 
ship between r0 and s, also for the Kr atom, is illu- 
strated in Fig. 5. The 'reciprocity' between the vari- 
ables is evident. 

4.  D i s c u s s i o n  o f  the  r e s u l t s  

Our results can be summarized as follows: (i). A rela- 
tionship has been found between the incoherent scatter- 
ing function on one part, and the electrostatic potential 
and the radial electron density of an N-electron system 
on the other [equations (22) and (23)]. This relationship 
can be interpreted in terms of a physical picture: for 
small values of the scattering variable (X-ray scattering 
range: s < 1.2) the major contribution to the incoherent 

/. 

1 2 3 s ( ~  ) 4 

Fig.5. Plot of ro vs. s as calculated from TFD* (--) and TF 
( × ) models of the Kr atom. 
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scattering function is furnished by the electrostatic po- 
tential. A small quantity of electric charge, that of the 
outer electrons, makes a classical contribution to the 
scattering. Since the electrostatic potential is sensitive 
to various correlation effects over nearly the entire 
range and, moreover, the electron density is influenced 
by these effects in the outer r range (Fig. 4), it is com- 
prehensible that the incoherent scattering is modified 
by them in the region of small s values (Bartell & 
Gavin, 1964). At high values of s (large momentum 
transfer) the dominant contribution is furnished by the 
electron density. The atom behaves more and more like 
a classical N-charge. When atom the is treated as a 
classical N-charge (r0 = 0) equation (22) becomes 

I,(s) = N .  Ic~. 

This is the Thompson cross section. 
(ii) Atomic incoherent scattering functions have been 

determined on the basis of the TFD statistical atomic 
model. They represent a better approximation to those 
derived from WH theory on the basis of the HF model 
than does the Heisenberg-Bewilogua function. 

A test of the HF SCF model, the determination of 
the incoherent scattering functions of heavy ions and 
the examination of the influence of correlation effects 
will be treated in following papers. 

u 

,0, / . / -  f x. 

0 

0 

0 

O. 

O, 

0 

0 
i i i s~,"~ ," 

Fig.6. Incoherent intensity functions /TFD* calculated from 
the TFD model by the use of modified equations (22) and 
(23) compared to I cR values of Cromer (o). 

Computation of the atomic incoherent intensities at 
15 s values with the aid of equation (25) and (26) took 
less than 20 s on a CDC 3300 computer, irrespective of 
the atomic number. 

Note added in proof: Two important contributions to 
the subject of this paper escaped the author 's  atten- 
tion, both in Phys. Rev. A 5, No 2 (1971). L.B. Men- 
delson & F. Biggs (pp. 688-691) have extended Hei- 
senberg's derivation to include the TFD model. D .E .  
Parks & M. Rotenberg (pp. 551-526), applying the 
theory of the homogeneous interacting electron gas 
and the TFD atomic model have derived the incohe- 
rent scattering as a function of the electron density. 
This is similar equation to our equation (22), which is a 
function of the electron density and the electrostatic 
potential. 

The author is indebted to Professor S. Lengyel and 
Mr F. Hajdu for their helpful discussions. Thanks are 
due to Mrs A. K6v6r for her valuable assistance and 
to Mr I. Tarlds for the preparation of the Figures. 
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